Chemie Klassen 8 a, b, c

Recherchiere zum Thema:

Geschichte des Salzes

Salzgewinnung im Salzlandkreis (Schönebeck und Bernburg)

Bedeutung des Salzes für den Menschen

Im Schulbuch Seite 186 und im Internet!

Erstelle einen Aufsatz (ca. 2 Seiten)

8b, 8c Chemie 25.04.2020

Hallo zusammen, wir sind im Stoff ein wenig hinter der Parallelklasse. Ich gehoffte, dass wir nach Ostern weiter machen können. Nun müssen wir jetzt ein bisschen mehr Gas geben.

Schaut also bitte auch in die Aufgaben der Parallelklasse.

Bleibt schön gesund und gut gelaunt.

Viel Spaß beim Lernen.

GIG F. E. Schubert

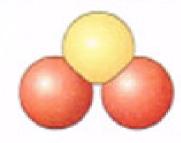
Einige Luftbestandteile näher betrachtet

1:5:7 oder was? Bindung?

Ergänze die Tabelle.

Name des Stoffes	Molekül- formel	Modell vom Bau	Aussag	gen zum Bau
	O ₂		1:1	<u>Atombindung</u>
Stickstoff	N ₂		1:1	<u>Atombindung</u>
	CO ₂		1:2	Polare Atombindung
Schwefeldioxid	SO ₂		1:2	Polare Atombindung
	H ₂		1:1	<u>Atombindung</u>

Teilchen bei chemischen Reaktionen



Oxide (Oxygenium) Oxidation

Kohlenstoff + Sauerstoff → Kohlenstoffdioxid

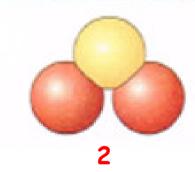
Schwefel + Sauerstoff → Schwefeldioxid

di - ????

Anzahl	Zahlwort (griech.)
1	mono
2	di
3	tri A
4	tetra
5	penta

2 Griechische Zahlwörter

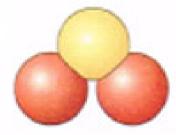
Zahlwort (griech.) Anzahl mono di tri tetra penta


2 Griechische Zahlwörter

Oxide (Oxygenium) Oxidation

Kohlenstoff + Sauerstoff -> Kohlenstoffdioxid

Schwefel + Sauerstoff -> Schwefeldioxid


di = 2 Sauerstoffatome

Alles Klar??

Oxide (Oxygenium) Oxidation

Kohlenstoff + Sauerstoff → Kohlenstoffdioxid

Schwefel + Sauerstoff -> Schwefeldioxid

Nichtmetall + Sauerstoff -> Nichtmetalloxid

Schwefeldioxid

Bau:

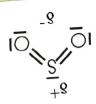
In einem <u>Schwefeldioxid</u>-Molekül sind <u>ZWei</u> Sauerstoffatome durch gemeinsame Elektronenpaare mit einem Schwefelatom verbunden.

Darstellung:

S

+

02



SO₂

$$\delta^{+}$$
 S
 O
 δ^{-}
Lewis-Formel

Schwefeldioxid

Eigenschaften:

•Siedetemperatur - °C

•Schmelztemperatur - °C

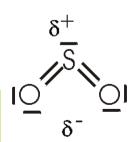
•Dichte g/cm³

Schwefeldioxid ist ein giftiges Gas.

Es lässt sich unter Druck oder bei einer Temperatur von −10 °C verflüssigen.

Das Gas löst sich gut in Wasser.

Es riecht charakteristisch stechend und reizt die Schleimhäute.


Schwefeldioxid wirkt bleichend und Insekten tötend.

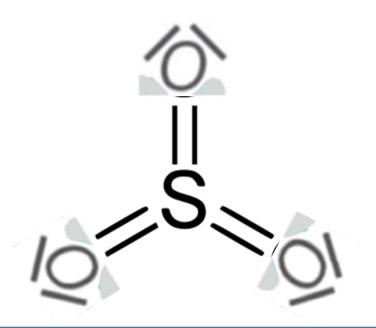
Außerdem hemmt es das Wachstum von Mikroorganismen.

Beim Menschen führen schon relativ geringe Anteile in der Atemluft zu Vergiftungserscheinungen. Größere Anteile können sogar tödlich wirken.

Verwendung:

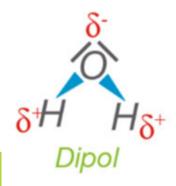
Schwefeldioxid dient zur Herstellung vieler Chemikalien, Medikamente und Farbstoffe. Aufgrund seiner keimtötenden Wirkung wird es als Desinfektionsmittel, z. B. beim "Ausschwefeln" von Weinfässern verwendet. Als Konservierungsmittel für Lebensmittel, z. B. Rosinen. wird Schwefeldioxid als Lebensmittelzusatzstoff eingesetzt. Auch wird es beim Bleichen von Papier und Textilien und bei der

Auch wird es beim Bleichen von Papier und Textilien und bei der Abwasserreinigung genutzt.


Schwefeltrioxid

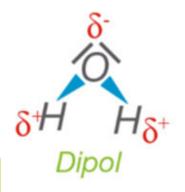
Bau: In einem <u>Schwefeltrioxid</u>-Molekül sind <u>drei</u> Sauerstoffatome durch gemeinsame Elektronenpaare mit einem Schwefelatom verbunden.

Darstellung:


 $2 SO_2 + O_2 \rightarrow 2 SO_3$

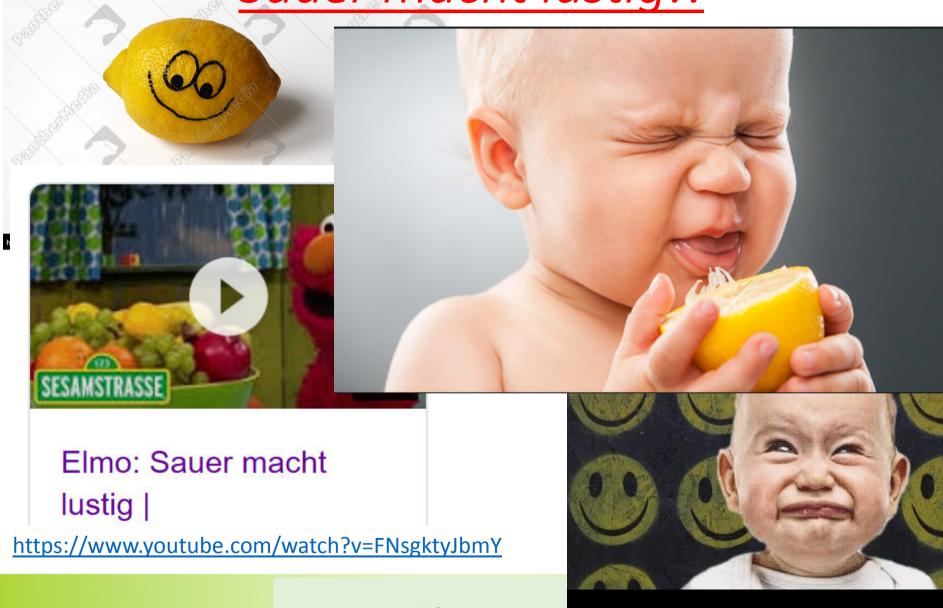
Schwefeltrioxid

Name des Luftbestandteils	Formel	Vermute, ob eine Reaktion mit Wasser eintreten könnte
Sauerstoff		
	N ₂	
Edelgase, z.B. Argon		
Kohlenstoffdioxid	CO ₂	
Schwefeldioxid	SO ₂	


Name des Luftbestandteils	Formel	Vermute, ob eine Reaktion mit Wasser eintreten könnte	
Sauerstoff	O ₂	Sauerstoff ist wenig wasserlöslich. Eine chemische Reaktion läuft vermutlich nicht ab.	
Stickstoff	N ₂	Stickstoff ist nahezu wasserunlöslich. Er reagiert nicht mit Wasser.	
Edelgase, z.B. Argon	Ar	Edelgase reagieren nicht mit Wasser.	
Kohlenstoffdioxid	CO ₂	Kohlenstoffdioxid löst sich gut in Wasser. Vielleicht könnte es auch mit Wasser reagieren.	
Schwefeldioxid *	SO ₂	Schwefeldioxid ist gut wasserlöslich. Vielleicht könnte es auch mit Wasser reagieren.	

* Reagiert mit Wasser!!!

Name des Luftbestandteils	Formel	Vermute, ob eine Reaktion mit Wasser eintreten könnte	
Sauerstoff	O ₂	Sauerstoff ist wenig wasserlöslich. Eine chemische Reaktion läuft vermutlich nicht ab.	
Stickstoff	N ₂	Stickstoff ist nahezu wasserunlöslich. Er reagiert nicht mit Wasser.	
Edelgase, z.B. Argon	Ar	Edelgase reagieren nicht mit Wasser.	
Kohlenstoffdioxid	CO ₂	Kohlenstoffdioxid löst sich gut in Wasser. Vielleicht könnte es auch mit Wasser reagieren.	
Schwefeldioxid	SO ₂	Schwefeldioxid ist gut wasserlöslich. Vielleicht könnte es auch mit Wasser reagieren.	


* Reagiert mit Wasser!!!

 CO_2

"Europaschule" Gymnasium Gommern

ELMO

Sauer macht lustig!!

h

Vorsicht,

Säure und Lauge! Schutzbrille tragen!

Säure

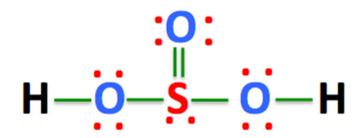
Vorsicht, Säure!

Schweflige Säure

Bau: In einem Schweflige Säure-Molekül sind drei

Sauerstoffatome durch gemeinsame Elektronenpaare mit einem Schwefelatom verbunden & 2 Sauerstoffatome durch gemeinsame Elektronenpaare mit zwei Wasserstoffatomen verbunden.

Darstellung:


SO₂

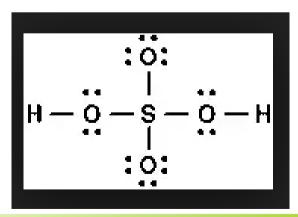
+

 H_2O

Schwefelsäure

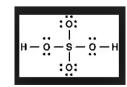
In einem Schwefelsäure-Molekül sind vier Bau:

> Sauerstoffatome durch gemeinsame Elektronenpaare mit einem Schwefelatom verbunden & 3 Sauerstoffatome durch gemeinsame Elektronenpaare mit zwei Wasserstoffatomen verbunden.


Darstellung:

H₂O

 \rightarrow H₂ SO₁



Schwefelsäure

Eigenschaften:

Verwendung:

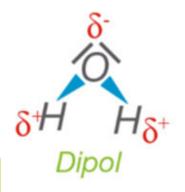
LB 160

Kohlenstoffdioxid

Bau: In einem Kohlenstoffdioxid-Molekül sind ZWEi
Sauerstoffatome durch gemeinsame Elektronenpaare mit
einem Kohlenstoffatom verbunden.

Darstellung:

C


+

02

CO₂

Name des Luftbestandteils	Formel	Vermute, ob eine Reaktion mit Wasser eintreten könnte	
Sauerstoff	O ₂	Sauerstoff ist wenig wasserlöslich. Eine chemische Reaktion läuft vermutlich nicht ab.	
Stickstoff	N ₂	Stickstoff ist nahezu wasserunlöslich. Er reagiert nicht mit Wasser.	
Edelgase, z.B. Argon	Ar	Edelgase reagieren nicht mit Wasser.	
Kohlenstoffdioxid	CO ₂	Kohlenstoffdioxid löst sich gut in Wasser. Vielleicht könnte es auch mit Wasser reagieren.	
Schwefeldioxid	SO ₂	Schwefeldioxid ist gut wasserlöslich. Vielleicht könnte es auch mit Wasser reagieren.	

* Reagiert mit Wasser!!!

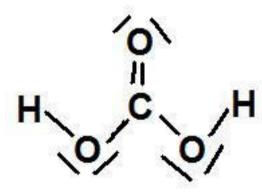
Kohlensäure

Bau:

In einem <u>Kohlensäure</u>-Molekül sind _____ Sauerstoffatome durch gemeinsame Elektronenpaare mit einem _____ atom verbunden & 2 Sauerstoffatome durch gemeinsame Elektronenpaare mit <u>zwei</u> Wasserstoffatomen verbunden.

Darstellung:

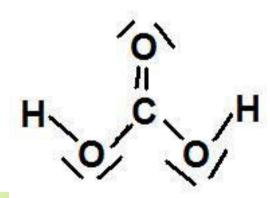
CO₂


+

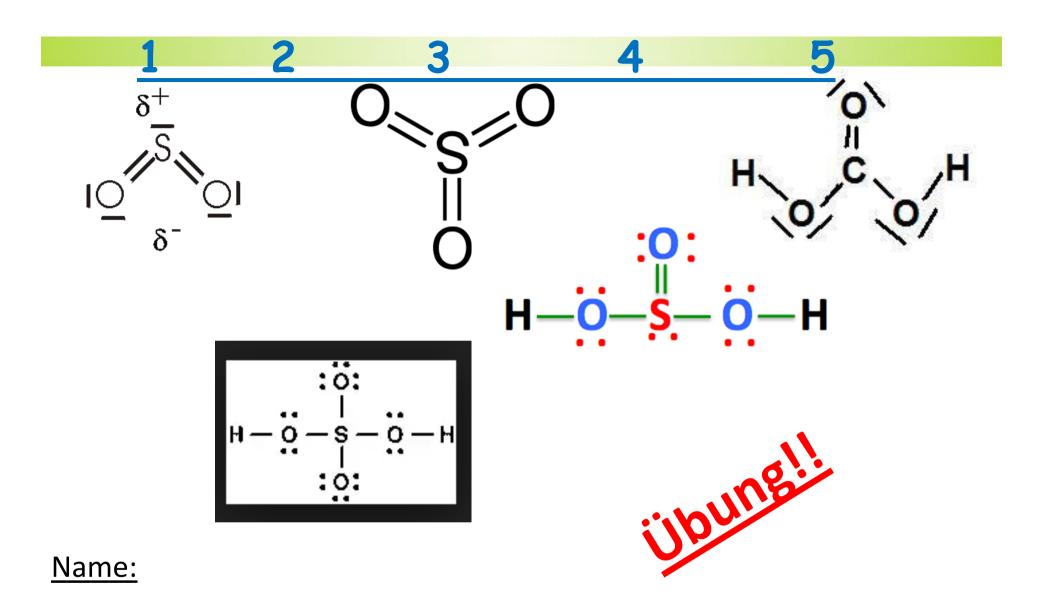
 H_2O

H₂ CO₃

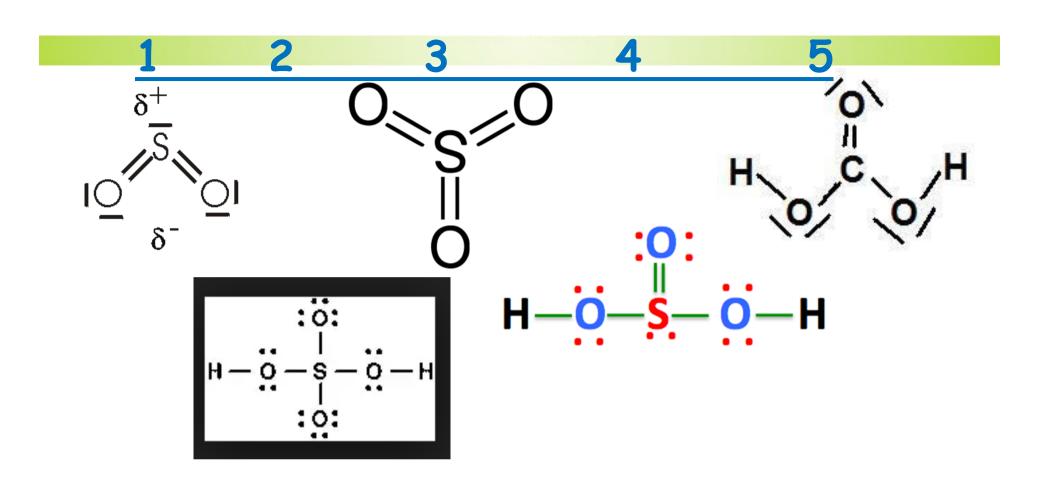
$H_2 CO_3$


"Europaschule" Gymnasium Gommern

Kohlensäure


Eigenschaften:

Verwendung:



Lewis-Formel

Formel:

Name:

Formel:

3 5

ZS: Dissoziation von Chlorwasserstoff in Wasser.

Anzahl	Zahlwort (griech.)
1	mono
2	di
3	tri
4	tetra
5	penta
2 Griechisch	ne Zahlwörter

Schwefel + Sauerstoff -> Schwefeldioxid

S

+

O₂

 \rightarrow

SO₂

Nichtmetall + Sauerstoff -> Nichtmetalloxid

→ → Reaktionsgleichungen → →

Nichtmetall + Sauerstoff -> Nichtmetalloxid

Nichtmetall + Sauerstoff -> Nichtmetalloxid

Steckbriefe SO2 CO2 in Form enie Tabelle Wicht we tall oxid CO2 SOZ Bildung (RG)
Eigenschaften Jouch Tabe Diolite Loslichkuit in Wester Brunbakut giftigkeit Vowendung:

Übersicht Säuren

Formel	Name	Salze	Rest bzw. Ionen
HCl HBr HF	Chlorwasserstoffsäure Bromwasserstoffsäure Fluorwasserstoffsäure	Chloride Bromide Fluoride	Cl ⁻ Br ⁻ F ⁻
H_2SO_4 H_2SO_3	Schwefelsäure Schweflige Säure	Sulf at e Sulf it e	SO_4^{2-} SO_3^{2-}
H_2CO_3 HNO_3	Kohlensäure Salpetersäure	Carbonate Nitr at e	CO_3^{2-} NO_3^{-}
H_3PO_4	Phosphorsäure	Phosphate	PO_4^{3-}

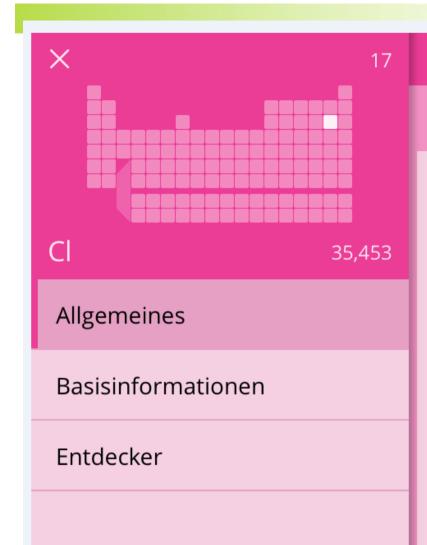
DAS solltest Du KÖNNEN!! vergl, auch TW s. 144 Ionen

Säure - Sauerstoff??

$$H_2$$
 + Cl_2 \rightarrow 2 HCl

SalzSäure - Chlorwasserstoffsäure

Wasserstoff


Bezeichnung	Wasserstoff - Hydrogenium
Klassifikation	Nichtmetalle

Gruppe, Periode

Relative Atommasse

Von griech.-lat. Hyd 1766 beim Auflösen entdeckt. Der größt Form von Wasser ge wir das Gas insbeso Atmosphäre sowie i das häufigste Element ist. Unsere Sonne ist ein gigantischer Fusionsreaktor, in dem Wasserstoff in Helium verwandelt wird. Wasserstoff wird beim Schweißen eingesetzt und ist im Rahmen der Ammoniaksynthese für die

Düngemittelproduktion von größter Bedeutung. Da er bei der Verbrennung nur Wasser und keine weiteren Emissionen liefert, handelt es sich auch um einen umweltfreundlichen und zukunftsträchtigen Energieträger. zukuntstrachtigen Energietrager.

Allgemeines

Chlor

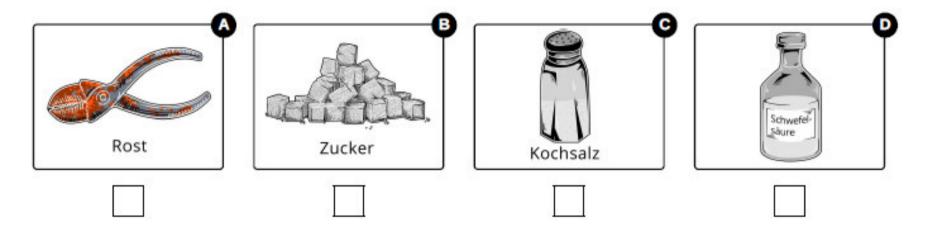
Von griech. chloros = gelbgrün. Entdeckt 1774. Im elementaren Zustand ist Chlor ein gelblichgrünes, aggressives Gas, das die meisten Elemente und Verbindungen unter "Chlorierung" angreift. Es gehört zu den am weitesten verbreiteten Elementen und kommt in großen Mengen im Meerwasser sowie im Steinsalz in Form von Natriumchlorid vor. Chlor gehört zu den wichtigsten Grundstoffen der chemischen Industrie. Beträchtliche Mengen werden zur Herstellung von PVC benötigt. Auch bei der Desinfizierung von Trinkwasser und öffentlichen Bädern spielt es eine große Rolle.

Chlorknallgasreaktion II

Chlorknallgasreaktion II

https://www.youtube.com/watch?v=xrsBB2KVRFY

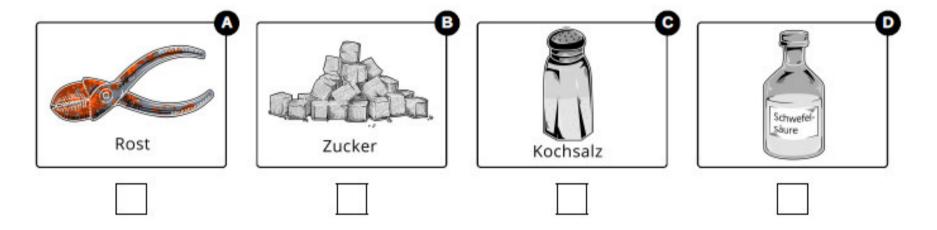
<u>SalzSäure</u> - Chlorwasserstoffsäure

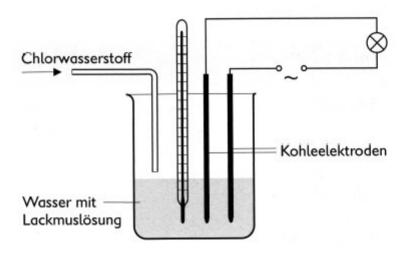

Eigenschaften:

Verwendung:

$$H_2$$
 + Cl_2 \rightarrow 2 HCl

Entscheide, aus welchen Stoffen HCl hergestellt werden kann.


Wähle die richtigen Stoffe aus.


Entscheide, aus welchen Stoffen HCl hergestellt werden kann.

Wähle die richtigen Stoffe aus.

Experiment mit Chlorwasserstoff

- Welche Beobachtungen sind beim dem abgebildeten Experiment zu erwarten?
 - a)
 - b)
 - c)
- Begründe, dass die Beobachtungen auf das Vorliegen einer chemischen Reaktion schließen lassen!
 - a)
 - b)
 - c)

- a) Stoffumwandlung: Aus
- b) Energieumwandlung:
- c) Teilchenveränderung: .

3. Gib die Wortgleichung und die Reaktionsgleichung an! Benenne die Teilchen, die vor und nach der Reaktion vorliegen!

≠ +

≓ +

4. Beschreibe die Teilchenveränderung, die bei dieser Reaktion auftreten!

5. Wodurch unterscheidet diese Reaktion von der Dissoziation von Natriumchlorid?

6. Trockenes Chlorwasserstoffgas leitet den elektrischen Strom nicht. Begründe!

- 1. Welche Beobachtungen sind beim abgebildeten Experiment zu erwarten?
 - a) Das Wasser mit der Lackmuslösung färbt sich rot.
 - b) Das Thermometer zeigt einen Temperaturanstieg an.
 - c) Die Lampe leuchtet auf.
- Begründe, dass die Beobachtungen auf das Vorliegen einer chemischen Reaktion schließen lassen!
 - a) Stoffumwandlung: Aus einer neutralen Lösung bildet sich eine saure Lösung.
 - b) Energieumwandlung: Wärme wird abgegeben. (exotherme Reaktion)
 - c) <u>Teilchenveränderung</u>: Aus Molekülen bilden sich Ionen.
- 3. Gib die Wortgleichung und die Reaktionsgleichung an! Benenne die Teilchen, die vor und nach der Reaktion vorliegen!

 \mathbf{HCl} \rightleftarrows \mathbf{H}^{+} + \mathbf{Cl}^{-}

 4. Beschreibe die Teilchenveränderung, die bei dieser Reaktion auftreten!

Die Teilchen der Chlorwasserstoffmoleküle reagieren zu Wasserstoff-Ionen und Chlorid-Ionen.

5. Wodurch unterscheidet diese Reaktion von der Dissoziation von Natriumchlorid?

Im festen Natriumchlorid liegen bereits Ionen vor, in der obigen Reaktion entstehen die Ionen erst aus den Molekülen

Trockenes Chlorwasserstoffgas leitet den elektrischen Strom nicht. Begründe!
 Im trockenen Chlorwasserstoffgas liegen Moleküle vor, die den elektrischen Strom nicht leiten.

ndikator Indikatoren indicare indicate bengl. 10 det Zeigen

Rotkohl als Indikator

In diesem Artikel erfährst du wie – und vor allem warum – man mit Rotkohl den Säuregehalt einer Flüssigkeit messen kann.

Dieser lila-farbige Rotkohl hat ungefähr den pH-Wert 4. Wie man das einfach herausfinden kann, erfährst du im Experiment! (Bild: Andrii Gorulko/Shutterstock.com ☑)

Indikator Blaukrautsaft: Links sauer, rechts alkalisch (Bild: Supermartl/Wikimedia Commons ☑, CC-Lizenz ☑)

pH-Messung mit Rotkohlsaft

ph Wert

pH-Wert Tabelle:

pH-Wert	Beispiel
1	Salzsäure
1,5	Magensäure, Schwefelsäure
2	Zitronensäure
2,5	Essigsäure
3	Cola
3,5	Orangensaft
4	Sauerkraut, Wein
4,5	Joghurt, saure Milch
5	Mineralwasser, Kaffee
5,5	menschliche Haut, Regenwasser
6	Urin
6,5	frische Milch, Speichel
7	Reines Wasser
7,5	Blut
8	Pankreassekret
8,5	Meerwasser
9	Backpulver
9,5	Seife
10	Waschmittel
10,5	Natriumcarbonat
11	Pottasche
11,5	Ammoniak
12	Kalk
12,5	Bleichmittel
13	Rohrreiniger
13,5	Kalilauge
14	Natronlauge

pH-Wert Tabelle:

pH-Wert	Beispiel
1	Salzsäure
1,5	Magensäure, Schwefelsäure
2	Zitronensäure
2,5	Essigsäure
3	Cola
3,5	Orangensaft
4	Sauerkraut, Wein
4,5	Joghurt, saure Milch
5	Mineralwasser, Kaffee
5,5	menschliche Haut, Regenwasser
6	Urin
6,5	frische Milch, Speichel
7	Reines Wasser
7,5	Blut
8	Pankreassekret
8,5	Meerwasser
9	Backpulver
0.5	0 11

4,5	Joghurt, saure Milch
5	Mineralwasser, Kaffee
5,5	menschliche Haut, Regenwasser
6	Urin
6,5	frische Milch, Speichel
7	Reines Wasser
7,5	Blut
8	Pankreassekret
8,5	Meerwasser
9	Backpulver
9,5	Seife
10	Waschmittel
10,5	Natriumcarbonat
11	Pottasche
11,5	Ammoniak
12	Kalk
12,5	Bleichmittel
13	Rohrreiniger
13,5	Kalilauge
14	Natronlauge

pH-Messung mit Rotkohlsaft

Die Anthocyane im Rotkohl sind die Farbstoffe, die den Rotkohlsaft zu einer Indikatorlösung machen. Anhand der Farbe kannst du kontrollieren, wie sauer deine Testflüssigkeit ist. Die Farbe der Mischung zeigt den pH-Wert an:

rot: pH 2 (sehr sauer)

lila: pH 4

blauviolett: pH 6

blau: pH 7 (neutral)

blau: pH8

blau-grün: pH 10

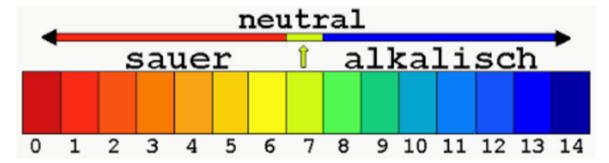
grünlich-gelb: pH 12 (sehr basisch)

Indikator Blaukrautsaft: Links sauer,

rechts alkalisch (Bild:

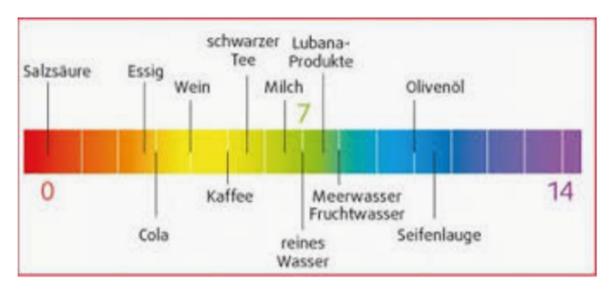
Supermartl/Wikimedia Commons ☑, CC-

Lizenz (2)


pH-Messung mit Rotkohlsaft

Lackmus ist ein Farbstoff, der aus bestimmten Flechten gewonnen wird.

- Die Flüssigkeit, die aus den Flechten gewonnen wird, ist blauviolett.
- Lackmus hat die besondere
 Eigenschaft, seine Farbe zu
 ändern, wenn er mit sauren oder
 basischen Stoffen in Kontakt
 kommt.
- Deshalb lässt sich mit \(\mathbb{L} \) Lackmus
 gut bestimmen, ob eine Flüssigkeit
 einen niedrigen pH-Wert hat oder
 eher einen hohen.

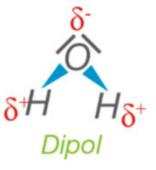

Lackmus wird als Säure-Base-Indikator in der Chemie und Biologie genutzt. Bei pH-Werten kleiner als 4,5 erscheint Lackmus rot, bei Werten größer als 8,3 blau und dazwischen violett.

ph-Wert

Nachweis der Säuren

raumzeitwellen.de

Basische Naturkosmetik Lubana Straubing - Presse


Na+Cl Nacl Was macht Säuren sauer??

- 1. Begründe, warum alle sauren Lösungen den elektrischen Strom leiten, die reinen Säuren dagegen nicht!
- 2. Wie ist das saure Verhalten einer Lösung zu erklären?
- 3. Begründe die Aussage, dass das Wasserstoff-Ion nichts anderes als ein Proton ist!

zu 3.)

Was macht Säuren sauer??

Dissoziation von Säuren

Säure	Formel	Dissoziat	tioneal	Säurerest-Ion			
Same	ronner	Dissoziationsgleichung Formel					Name
Salzsäure	HCl	HCl ⇄ I	H ⁺	+	Cl -	Cl -	Chlorid-Ion
Salpetersäure	HNO ₃	HNO₃ ⇄]	H ⁺	+	NO ₃ -	NO ₃ -	Nitrat-Ion
Kohlensäure	$ m H_2CO_3$	H ₂ CO ₃ ⇄ 2	H ⁺	+	CO ₃ ² -	CO ₃ ² -	Carbonat-Ion
Schwefelsäure	$ m H_2SO_4$	H ₂ SO ₄	H+	+	SO ₄ ² -	SO ₄ ² -	Sulfat-Ion
Schweflige Säure	H ₂ SO ₃	H ₂ SO ₃	H ⁺	+	SO ₃ ² -	SO ₃ ² -	Sulfit-Ion
Phosphorsäure	H ₃ PO ₄	H ₃ PO ₄ ⇄ 3	H+	+	PO ₄ 3-	PO ₄ 3-	Phosphat-Ion

Allgemein:

Säuren **⇄**

Wasserstoff- + Ion(en)

Säurerest-Ionen

Säuren dissoziieren in wässriger Lösung in freibewegliche einfach positiv geladene Wasserstoff-Ionen und negativ geladene | Säurerest-Ionen.

https://www.youtube.com/watch?v=
yNOOgFBWrtw

LUPE

 $HCI \rightleftharpoons H^+ + CI^-$

Aqua / in Wasser

+ Cl -

Allgemein: Säuren

Wasserstoff- + SäurerestIon(en) Ionen

Säuren dissoziieren in wässriger Lösung in freibewegliche einfach positiv geladene Wasserstoff-Ionen und negativ geladene Säurerest-Ionen.

Dissoziation von Säuren

Allgemein:

Säuren dissoziieren in wässriger Lösung in freibewegliche einfach positiv geladene Wasserstoff-Ionen und negativ geladene Särerest-Ionen.

$$HNO_3 \rightleftharpoons H^+ + NO_3^-$$

$$H_2CO_3 \rightleftharpoons 2H^+ + CO_3^{2-}$$

$$H_{2}SO_{4} \rightleftharpoons 2 H^{+} + SO_{4}^{2-}$$
 $H_{3}PO_{4} \rightleftharpoons 3 H^{+} + PO_{4}^{3-}$

Name:	Datum:

Test-Dissoziation von Säuren 23P

<u>Säure</u>	Formel	<u>Dissoziationsgleichung</u>	<u>Säurerest-Ion</u>		
<u> Saure</u>	<u>romei</u>	<u>Dissoziationsgleichung</u>	<u>Formel</u>	<u>Name</u>	
Salzsäure					
			NO ₃ -		
		$H_2CO_3 \rightleftharpoons 2 H^+ + CO_3^{2-}$			
Schwefelsäure					
	H ₂ SO ₃		SO ₃ ²⁻		
				Phosphat-Ion	

Dissoziation von Säuren

Säure	Formel	Dissoziationsgleichung	Säurerest-Ion		
Saure Forme		Dissoziacionsgleichung	Formel	Name	
Salzsäure	HCl	HCl ⇄ H ⁺ + Cl -	CI -	Chlorid-Ion	
Salpetersäure	HNO ₃	HNO ₃	NO ₃ -	Nitrat-Ion	
Kohlensäure	$ m H_2CO_3$	$H_2CO_3 \rightleftharpoons 2 H^+ + CO_3^{2-}$	CO ₃ ² -	Carbonat-Ion	
Schwefelsäure	H ₂ SO ₄	$H_2SO_4 \rightleftharpoons 2 H^+ + SO_4^{2-}$	SO ₄ ² -	Sulfat-Ion	
Schweflige Säure	H ₂ SO ₃	$H_2SO_3 \rightleftharpoons 2 H^+ + SO_3^{2-}$	SO ₃ ² -	Sulfit-Ion	
Phosphorsäure	H ₃ PO ₄	H ₃ PO ₄	PO ₄ 3-	Phosphat-Ion	

Allgemein:

Säuren

Wasserstoff- + Säurerest
Ion(en) Ionen

Säuren dissoziieren in wässriger Lösung in freibewegliche einfach positiv geladene Wasserstoff-Ionen und negativ geladene Säurerest-Ionen.

Dissoziation von Säuren

Säure	Formel	Dissoziationsgleichung					Säure	erest-Ion
заше	Former		10188	OZIACIONS	Formel	Name		
Salzsäure	HCl	HCI	⇄	\mathbf{H}^{+}	+	CI -	Cl -	Chlorid-Ion
Salpetersäure	HNO ₃	HNO ₃	⇄	\mathbf{H}^{+}	+	NO ₃ -	NO ₃ -	Nitrat-Ion
Kohlensäure	$ m H_2CO_3$	$ m H_2CO_3$	₹	2 H ⁺	+	CO ₃ ²	ueu;	Carbonat-Ion
Schwefelsäure	$ m H_2SO_4$	$ m H_2SO_4$	5	T H	Ψ	SO ₄ ² -	SO ₄ ² -	Sulfat-Ion
Schweflige Säure	Dass Dass	$ m H_2SO_3$	₹	2 H ⁺	+	SO ₃ ² -	NO ₃ - SO ₄ ² - SO ₃ ² -	Sulfit-Ion
Phosphorsäure	H ₃ PO ₄			3 H ⁺			PO ₄ 3-	Phosphat-Ion

Allgemein:

Säuren

Wasserstoff- + SäurerestIon(en) Ionen

Säuren dissoziieren in wässriger Lösung in freibewegliche einfach positiv geladene Wasserstoff-Ionen und negativ geladene Säurerest-Ionen.

LB 153-163 Zusammenfassend Lesen!!

Hallo liebe Schülerinnen und Schüler. Die hier anliegende Präsentation beinhaltet die nächsten Unterrichtsstunden unter Umständen sogar bis zu den Ferien.

In der Zeit der Hausarbeit arbeitet bitte im Lehrbuch, Arbeitsblättern, diese bitte ausdrucken, Internet die entsprechenden Kapitel ab.

Es ist nicht notwendig, alle Folien auszudrucken. Die wichtigsten

Fakten werde ich markieren. (X M(M= Merksatz))

Auch ist es sinnvoll, besonders interessante Aspekte in den Hefter zu übernehmen, abschreiben, abmalen.

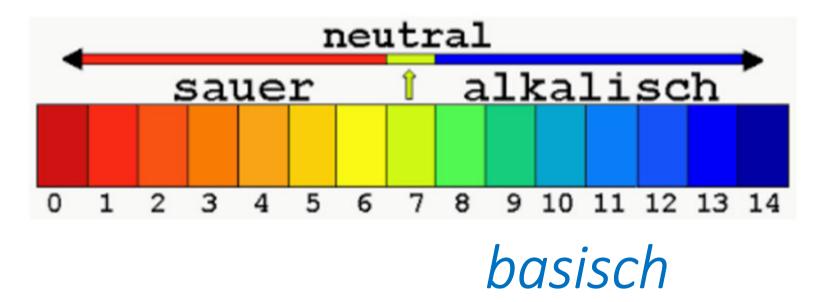
Fragen bitte notieren.

Im Frontalunterricht werden wir das bisher gelernte festigen, weiter im Stoff gehen, und unter Umständen, Experimente durchführen. Bitte bearbeitet die Themen gründlich, und schaut auch gern im Internet nach weiterführenden Informationen.

Viel Spaß und liebe Grüße F. E. Schubert

?????

Salzsäure


Natriumhydroxid

HCI plus **NaOH**

?????

ph-Wert

indikatoren Exp. in der Schule

SalPeterSäure

Sal Salz Salt Sel Peter - Petra Petrus - Der Fels

							Н		
Salpetersäure	HNO ₃	HNO₃ ⇄	H+	+	NO3-	NO ₃ -		Nitrat-Ion	

LUPE

HCI

 \rightleftharpoons

H +

+ Cl⁻

NaOH

 \rightleftharpoons

Na⁺

+

OH -

Aqua / in Wasser

OH -

Salze - Neutralisation

NaOH \rightleftarrows Na⁺ + OH ⁻

HCl \rightleftarrows H⁺ + Cl ⁻

Aqua / in Wasser

$$H^+ + OH^- \stackrel{\rightharpoonup}{\leftarrow} H_2O$$

Salze - Neutralisation

Salze sind Stoffe, die aus positiv geladenen Metallionen (Kationen) und negativ geladenen Säure Restionen bestehen.

Die Metallionen stammen von Basen (Laugen, Hydroxiden), die SäureRestionen von der Säure.

X M(M= Merksatz

Base plus Säure reagiert zu Salz und Wasser.

Natriumchlorid, Kochsalz - fester kristalliner Stoff.

Salze

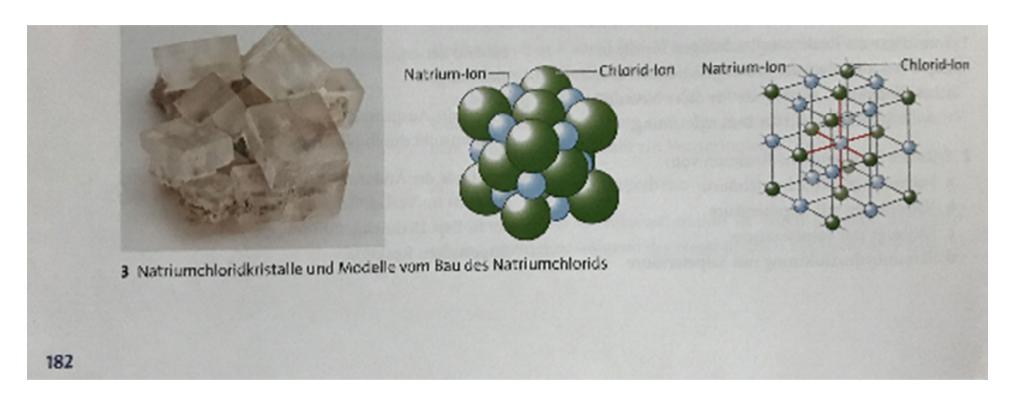
Vorkommen:

Bergleute brechen Salz in mehr als 500 Meter... volksstimme.de

Das Steinsalz Bergwerk Bernburg - Salzlandmagazin bbglive.de

"Europaschule" Gymna

Das weiße Gold des Ozeans: die Salzgärten am... meinfrankreich.com


Flor de Sal: In Spaniens Salzgärten auf den S... blog.jamon.de

Salze

Bau:

Bau &

Zusammenhang zwischen Bau und Eigenschaften der Salze (Ionensubstanzen)

	Eigenschaft	Erklärung mit Hilfe des Baus		
	kristallin (= regelmäßiger Bau)	regelmäßige Anordnung der entgegengesetzt geladenen Ionen im Ionengitter		
	fest (hohe Schmelz- und Siedetemperatur)	starke Anziehung zwischen den entgegengesetzt geladenen Ionen, d.h. viel Wärme muss zugeführt werden, um die starken Anziehungskräfte zu überwinden		
	spröde (leicht zerspringend)	Die Ionenschichten werden bei einer Verformung gegeneinander verschoben. Dabei geraten Ionen mit gleicher Ladung nebeneinander und stoßen sich ab.		
Eigensch	aften	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

Salze

Bau:

keine elektrische Leitfähigkeit des festen Salzes	Vorhandensein von Ladungsträgern (= Ionen), aber diese sind aufgrund der starken Anziehungskräfte zwischen den entgegengesetzt geladenen Ionen nicht frei beweglich
elektrische Leitfähigkeit der Salzlösung	DISSOZIATION Wassermoleküle lagern sich an die Ionen des Salzes und heben die Anziehungskräfte zwischen den entgegengesetzt geladenen Ionen auf , d.h. die Ionen (= Ladungsträger) werden frei beweglich.

Salze

Weg I – Neutralisation Reagiert Natriumhydroxid mit Schwefelsäure, so entstehen Wasser und Natriumsulfat (▶1). In der Ionengleichung kann man erkennen, dass die Hydroxid-Ionen der basischen Lösung mit den Wasserstoff-Ionen der sauren Lösung zu Wassermolekülen reagieren (▶Exp. 4, S. 192).

2 NaOH (aq) +
$$H_2SO_4$$
 (aq) \longrightarrow Na₂SO₄ (aq) + 2 H_2O
2 Na⁺ + 2 OH⁻ + 2 H⁺ + SO_4^{2-} \longrightarrow 2 Na⁺ + SO_4^{2-} + 2 H_2O

Salze

Weg II – Reaktion von Metalloxiden mit verdünnten Säurelösungen Salze lassen sich auch durch die Reaktion von Metalloxiden mit verdünnten Säurelösungen herstellen (► Exp. 5, S. 192). Die Metalloxide wiederum können durch die Oxidation des Metalls mit Sauerstoff gebildet werden.

$$K_2O$$
 + H_2SO_4 (aq) \longrightarrow K_2SO_4 (aq) + H_2O
 Al_2O_3 + $3H_2SO_4$ (aq) \longrightarrow $Al_2(SO_4)_3$ (aq) + $3H_2O$
Metalloxid + Säure \longrightarrow Salzlösung + Wasser

Salze

Weg III – Reaktion von unedlen Metallen mit verdünnten Säurelösungen

Unedle Metalle wie Kalium, Aluminium, Eisen und Magnesium reagieren mit verdünnten Säurelösungen in einer chemischen Reaktion zu Salzlösungen und Wasserstoff (▶ Exp. 1 und 2, S. 192).

2 K +
$$H_2SO_4$$
 (aq) \longrightarrow K_2SO_4 (aq) + $H_2 \uparrow$
2 Al + $3 H_2SO_4$ (aq) \longrightarrow $Al_2(SO_4)_3$ (aq) + $3 H_2 \uparrow$

Salze

Weg IV – Reaktion von Metallen mit Halogenen Bei dieser Art der Salzbildung entstehen Salze durch die Reaktion eines Metalls mit einem Element der VII. Hauptgruppe, den Halogenen, weshalb diese auch als Salzbildner bezeichnet werden. Beispielsweise wird Natriumchlorid durch die Reaktion von Natrium mit Chlor gebildet oder Aluminiumbromid durch die Reaktion von Aluminium mit Brom. Diese Reaktionen verlaufen meist sehr heftig (▶2).

Salze

Reaktion von Brom und Aluminium

Weg IV – Reaktion von Metallen mit Halogenen Bei dieser Art der Salzbildung entstehen Salze durch die Reaktion eines Metalls mit einem Element der VII. Hauptgruppe, den Halogenen, weshalb diese auch als Salzbildner bezeichnet werden. Beispielsweise wird Natriumchlorid durch die Reaktion von Natrium mit Chlor gebildet oder Aluminiumbromid durch die Reaktion von Aluminium mit Brom. Diese Reaktionen verlaufen meist sehr heftig (▶2).

https://www.youtube.com/watch?v=IZoFJpHIDu4

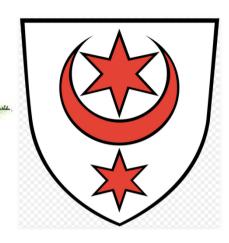
Reaktion von Brom und Aluminium

Reaktion von Brom und Aluminium

Film in der Schule

Halogene...

...chemische Elemente, die ohne Beteiligung von Sauerstoff mit Metallen Salze bilden.


<u>Die Halogene</u> [halogeːnə] ("Salzbildner", von

altgriechisch ἄλς háls "Salz" und γεννάω

gennáō "erzeugen") bilden die 7. Hauptgruppe.

Genesis - Genese – Entstehung – Geburt - Gestaltung Die heilige Bibel - <u>jüdischer Tanach</u> (Thora) Schöpfungsgeschichte 1.Buch Mose

Halle / Saale

Salze

Bedeutung:

```
Bedwhing der Salte

1) Lebenswebnindig - Vehrunspmittel · Nahmapskil
- Konnernierungstlaff
- Oppraaben

2 Salt als Handlingenare · hortbar nie Geld , Tahlung willed Salta

3 Saltssleng : Saltsslene als 1987 als geschaft
```

| | <u>Salze - Namen und Formeln</u>

X	Ubun	a
_		9

Arten		Chloride	Nitrate	Sulfate	Carbonate	Phosphate
sind Salze der		Chlorwasserstoffsäure	Salpetersäure	Schwefelsäure	Kohlensäure	Phosphorsäure
Formel der Säure		HC1	HNO ₃	H ₂ SO ₄	H ₂ CO ₃	H ₃ PO ₄
die Säure dissoziiert in		H+ ; Cl-	H ⁺ ; NO ₃ -	2 H ⁺ ; SO ₄ ² -	2 H ⁺ ; CO₃²⁻	3 H ⁺ ; PO ₄ ³ -
Aufstellen der Verhältnisformel für ein Salz 1. Wertigkeit des Metallions feststellen (PSE)	Na ⁺	Na ⁺ Cl· 1 : 1 → NaCl				
 Wertigkeit des Säurerests überprüfen Verhältnis von positiven und negativen Ladungen so bilden, dass die Summe der Ladungen Null ergibt 	Ca ²⁺	$\begin{array}{ccc} Ca^{2+} & Cl^{-} \\ 1 & : & 2 \\ \\ \rightarrow & CaCl_{2} \end{array}$				
oder 1. Ermitteln der Symbole der Elemente, aus denen die Verbindung besteht 2. Feststellen der Wertigkeit der Elemente	Fe ³⁺	$\begin{array}{ccc} Fe^{3+} & Cl^{-} \\ 1 & : & 3 \\ \\ \rightarrow & FeCl_{3} \end{array}$				
 Berechnen des k.g.V. Feststellen, wie oft die Wertigkeit im k.g.V. enthalten ist →Angeben des Zahlen- verhältnisses der Ionen Aufstellen der Formel 	Fe ²⁺	$\begin{array}{ccc} Fe^{2+} & Cl^* \\ l & : & 2 \\ \\ \rightarrow & FeCl_2 \end{array}$				

	Natrium Na ⁺	Magnesium Mg ²⁺	Aluminium Al ³⁺	Blei Pb ⁴⁺
Cl ⁻	NaCl			
Chlorid	Natriumchlorid			
NO ₃				
SO ₄ ²⁻				
SO ₃ ²⁻				
CO ₃ ²⁻				
PO ₄ ³⁻				

	Natrium	Magnesium	Aluminium	Blei
	Na ⁺	Mg^{2+}	Al^{3+}	Pb ⁴⁺
C1 ⁻	NaCl	MgCl ₂	AlCl ₃	PbCl ₄
Chlorid	NatriumChlorid	MagnesiumChlorid	AluminiumChlorid	Blei(IV)Chlorid
NO_3^-	NaNO ₃	$Mg(NO_3)_2$	$Al(NO_3)_3$	$Pb(NO_3)_4$
Nitrat	NatriumNitrat	MagnesiumNitrat	AluminiumNitrat	Blei(IV)Nitrat
SO_4^{2-}	Na_2SO_4	$MgSO_4$	$Al_2(SO_4)_3$	Pb(SO ₄) ₂
Sulfat	NatriumSulfat	MagnesiumSulfat	Aluminium Sulfat	Blei(IV)Sulfat
SO ₃ ²⁻	Na_2SO_3	$MgSO_3$	$Al_2(SO_3)_3$	$Pb(SO_3)_2$
Sulfit	NatriumSulfit	MagnesiumSulfit	AluminiumSulfit	Blei(IV)Sulfit
CO_3^{2-}	Na_2CO_3	MgCO ₃	$Al_2(CO_3)_3$	$Pb(CO_3)_2$
Carbonat	NatriumCarbonat	MagnesiumCarbonat	AluminiumCarbonat	Blei(IV)Carbonat
PO_4^{3-}	Na_3PO_4	$Mg_3(PO_4)_2$	AlPO ₄	$Pb_3(PO_4)_4$
Phosphat	NatriumPhosphat	MagnesiumPhosphat	AluminiumPhosphat	Blei(IV)Phosphat

X M(M= Merksatz

DAS solltest Du KÖNNEN!! vergl, auch TW s. 144 Ionen

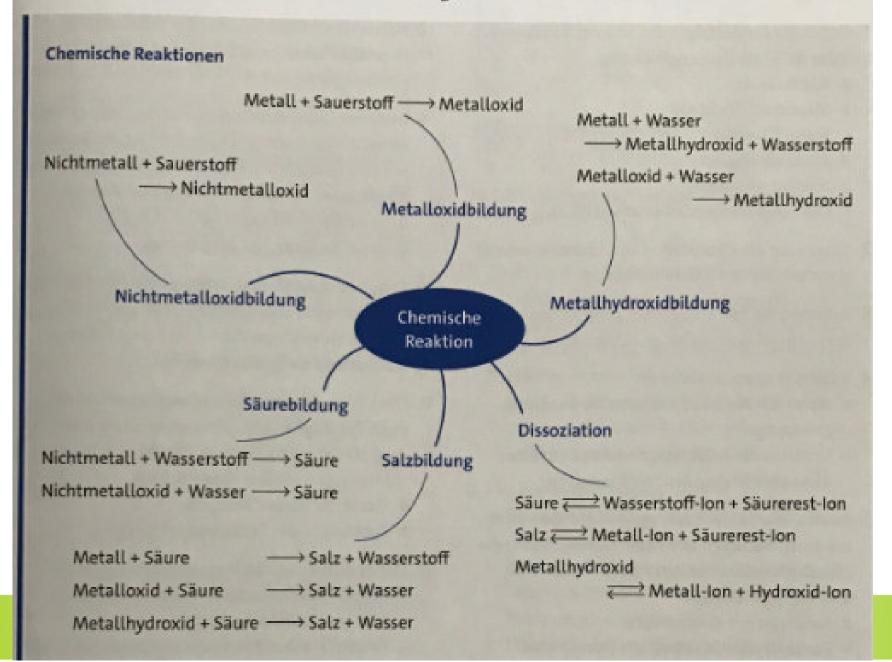
Hallo liebe Schülerinnen und Schüler. Die hier anliegende Präsentation beinhaltet die nächsten Unterrichtsstunden unter Umständen sogar bis zu den Ferien.

In der Zeit der Hausarbeit arbeitet bitte im Lehrbuch, Arbeitsblättern, Internet die entsprechenden Kapitel ab. Es ist nicht notwendig, alle Folien auszudrucken. Die wichtigsten Fakten werde ich markieren.

Das ist der Stoff für die nächsten 2 Wochen bis zu den FERIEN!!! (X M(M= Merksatz))

Auch ist es sinnvoll, besonders interessante Aspekte in den Hefter zu übernehmen, abschreiben, abmalen.

Fragen bitte notieren.


Im Frontalunterricht werden wir das bisher gelernte festigen, weiter im Stoff gehen, und unter Umständen Experimente durchführen. Bitte bearbeitet die Themen gründlich, und schaut auch gern im Internet nach weiterführenden Informationen.

Viel Spaß und liebe Grüße F. E. Schubert

S-B-S Zusammenfassung

191 ff bis 201 lesen & verstehen Fragen notieren Aufgaben lösen!!

Säuren, Basen und Salze systematisieren

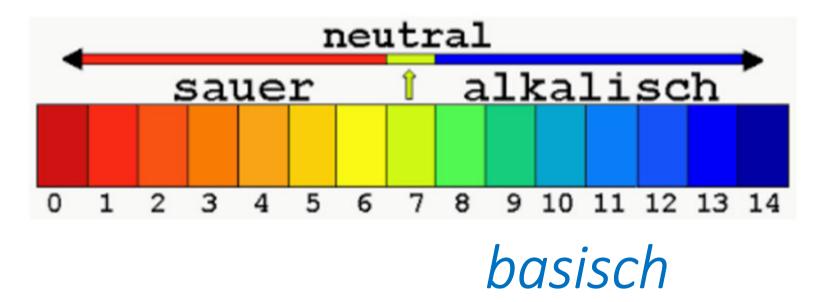
Hallo liebe Schülerinnen und Schüler. H Hier die Präsentation zur Zusammenfassung Salze.

Bitte bearbeitet die Themen gründlich, und schaut auch gern im Internet nach weiterführenden Informationen.

Viel Spaß, schöne Ferien und liebe Grüße F. E. Schubert

?????

Salzsäure


Natriumhydroxid

HCI plus **NaOH**

?????

ph-Wert

LUPE

HCI

 \rightleftharpoons

H +

+ Cl⁻

NaOH

 \rightleftharpoons

Na⁺

+

OH -

Aqua / in Wasser

OH -

Salze - Neutralisation

NaOH \rightleftarrows Na⁺ + OH ⁻

HCl \rightleftarrows H⁺ + Cl ⁻

Aqua / in Wasser

$$H^+ + OH^- \stackrel{\rightharpoonup}{\leftarrow} H_2O$$

Salze - Neutralisation

Salze sind Stoffe, die aus positiv geladenen Metallionen (Kationen) und negativ geladenen Säure Restionen bestehen.

Die Metallionen stammen von Basen (Laugen, Hydroxiden), die SäureRestionen von der Säure.

X M(M= Merksatz

Base plus Säure reagiert zu Salz und Wasser.

Natriumchlorid, Kochsalz - fester kristalliner Stoff.

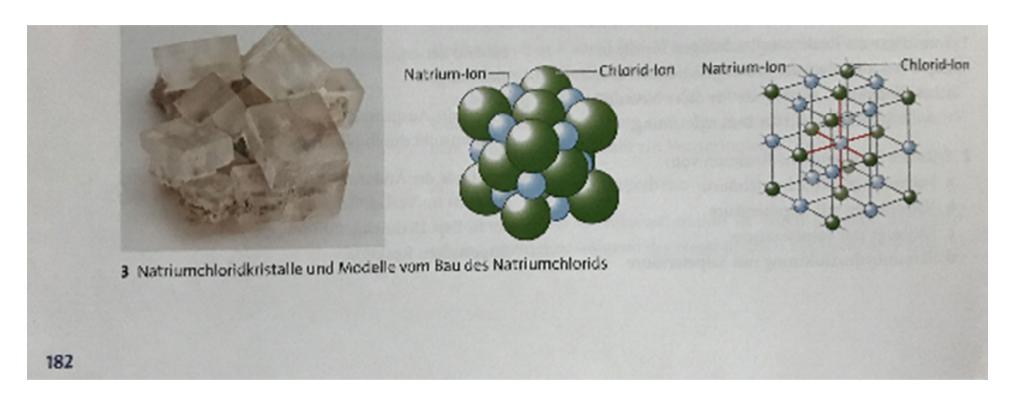
Salze

Bergleute brechen Salz in mehr als 500 Meter... volksstimme.de

Das Steinsalz Bergwerk Bernburg - Salzlandmagazin bbglive.de

"Europaschule" Gymna

Das weiße Gold des Ozeans: die Salzgärten am... meinfrankreich.com


Flor de Sal: In Spaniens Salzgärten auf den S... blog.jamon.de

Salze

Bau:

Bau &

Zusammenhang zwischen Bau und Eigenschaften der Salze (Ionensubstanzen)

	Eigenschaft	Erklärung mit Hilfe des Baus		
	kristallin (= regelmäßiger Bau)	regelmäßige Anordnung der entgegengesetzt geladenen Ionen im Ionengitter		
	fest (hohe Schmelz- und Siedetemperatur)	starke Anziehung zwischen den entgegengesetzt geladenen Ionen, d.h. viel Wärme muss zugeführt werden, um die starken Anziehungskräfte zu überwinden		
	spröde (leicht zerspringend)	Die Ionenschichten werden bei einer Verformung gegeneinander verschoben. Dabei geraten Ionen mit gleicher Ladung nebeneinander und stoßen sich ab.		
Eigensch	aften	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

Salze

Bau:

keine elektrische Leitfähigkeit des festen Salzes	Vorhandensein von Ladungsträgern (= Ionen), aber diese sind aufgrund der starken Anziehungskräfte zwischen den entgegengesetzt geladenen Ionen nicht frei beweglich
elektrische Leitfähigkeit der Salzlösung	DISSOZIATION Wassermoleküle lagern sich an die Ionen des Salzes und heben die Anziehungskräfte zwischen den entgegengesetzt geladenen Ionen auf , d.h. die Ionen (= Ladungsträger) werden frei beweglich.

Salze

Weg I – Neutralisation Reagiert Natriumhydroxid mit Schwefelsäure, so entstehen Wasser und Natriumsulfat (▶1). In der Ionengleichung kann man erkennen, dass die Hydroxid-Ionen der basischen Lösung mit den Wasserstoff-Ionen der sauren Lösung zu Wassermolekülen reagieren (▶Exp. 4, S. 192).

2 NaOH (aq) +
$$H_2SO_4$$
 (aq) \longrightarrow Na₂SO₄ (aq) + 2 H_2O
2 Na⁺ + 2 OH⁻ + 2 H⁺ + SO_4^{2-} \longrightarrow 2 Na⁺ + SO_4^{2-} + 2 H_2O

Salze

Weg II – Reaktion von Metalloxiden mit verdünnten Säurelösungen Salze lassen sich auch durch die Reaktion von Metalloxiden mit verdünnten Säurelösungen herstellen (► Exp. 5, S. 192). Die Metalloxide wiederum können durch die Oxidation des Metalls mit Sauerstoff gebildet werden.

$$K_2O$$
 + H_2SO_4 (aq) \longrightarrow K_2SO_4 (aq) + H_2O
 Al_2O_3 + $3H_2SO_4$ (aq) \longrightarrow $Al_2(SO_4)_3$ (aq) + $3H_2O$
Metalloxid + Säure \longrightarrow Salzlösung + Wasser

Salze

Weg III – Reaktion von unedlen Metallen mit verdünnten Säurelösungen

Unedle Metalle wie Kalium, Aluminium, Eisen und Magnesium reagieren mit verdünnten Säurelösungen in einer chemischen Reaktion zu Salzlösungen und Wasserstoff (▶ Exp. 1 und 2, S. 192).

$$2 K + H2SO4 (aq) \longrightarrow K2SO4 (aq) + H2 \uparrow$$

$$2 Al + 3 H2SO4 (aq) \longrightarrow Al2(SO4)3 (aq) + 3 H2 \uparrow$$

Salze

Weg IV – Reaktion von Metallen mit Halogenen Bei dieser Art der Salzbildung entstehen Salze durch die Reaktion eines Metalls mit einem Element der VII. Hauptgruppe, den Halogenen, weshalb diese auch als Salzbildner bezeichnet werden. Beispielsweise wird Natriumchlorid durch die Reaktion von Natrium mit Chlor gebildet oder Aluminiumbromid durch die Reaktion von Aluminium mit Brom. Diese Reaktionen verlaufen meist sehr heftig (▶2).

Darstellung:

Reaktion von Brom und Aluminium

Weg IV – Reaktion von Metallen mit Halogenen Bei dieser Art der Salzbildung entstehen Salze durch die Reaktion eines Metalls mit einem Element der VII. Hauptgruppe, den Halogenen, weshalb diese auch als Salzbildner bezeichnet werden. Beispielsweise wird Natriumchlorid durch die Reaktion von Natrium mit Chlor gebildet oder Aluminiumbromid durch die Reaktion von Aluminium mit Brom. Diese Reaktionen verlaufen meist sehr heftig (>2).

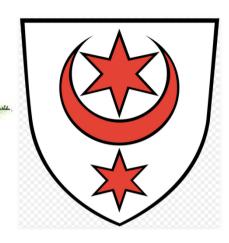
https://www.youtube.com/watch?v=IZoFJpHIDu4

Reaktion von Brom und Aluminium

Reaktion von Brom und Aluminium

Halogene...

...chemische Elemente, die ohne Beteiligung von Sauerstoff mit Metallen Salze bilden.


<u>Die Halogene</u> [halogeːnə] ("Salzbildner", von

altgriechisch ἄλς háls "Salz" und γεννάω

gennáō "erzeugen") bilden die 7. Hauptgruppe.

Genesis - Genese – Entstehung – Geburt - Gestaltung Die heilige Bibel - <u>jüdischer Tanach</u> (Thora) Schöpfungsgeschichte 1.Buch Mose

Halle / Saale

Salze

Bedeutung:

```
Bedwhing der Salte

1) Lebenswebnindig - Vehrunspmittel · Nahmapskil
- Konnernierungstlaff
- Oppraaben

2 Salt als Handlingenare · hortbar nie Geld , Tahlung willed Salta

3 Saltssleng : Saltsslene als 1987 als geschaft
```

| | <u>Salze - Namen und Formeln</u>

X Übung

Arten		Chloride	Nitrate	Sulfate	Carbonate	Phosphate
sind Salze der		Chlorwasserstoffsäure	Salpetersäure	Schwefelsäure	Kohlensäure	Phosphorsäure
Formel der Säure		HC1	HNO ₃	H ₂ SO ₄	H ₂ CO ₃	H ₃ PO ₄
die Säure dissoziiert in		H+ ; Cl	H ⁺ ; NO ₃ -	2 H ⁺ ; SO ₄ ² -	2 H ⁺ ; CO₃²⁻	3 H ⁺ ; PO ₄ ³ -
Aufstellen der Verhältnisformel für ein Salz 1. Wertigkeit des Metallions feststellen (PSE)	Na ⁺	$\begin{array}{ccc} & Na^+ & Cl^- \\ & l & : & l \\ \\ \rightarrow & NaCl \end{array}$				
 Wertigkeit des Säurerests überprüfen Verhältnis von positiven und negativen Ladungen so bilden, dass die Summe der Ladungen Null ergibt 	Ca ²⁺	$\begin{array}{ccc} Ca^{2+} & Cl^{-} \\ 1 & : & 2 \\ \\ \rightarrow & CaCl_{2} \end{array}$				
oder 1. Ermitteln der Symbole der Elemente, aus denen die Verbindung besteht 2. Feststellen der Wertigkeit der Elemente	Fe ³⁺	$\begin{array}{ccc} Fe^{3+} & Cl^{-} \\ 1 & : & 3 \\ \\ \rightarrow & FeCl_{3} \end{array}$				
 Berechnen des k.g.V. Feststellen, wie oft die Wertigkeit im k.g.V. enthalten ist →Angeben des Zahlen- verhältnisses der Ionen Aufstellen der Formel 	Fe ²⁺	$\begin{array}{ccc} Fe^{2+} & Cl^* \\ l & : & 2 \\ \\ \rightarrow & FeCl_2 \end{array}$				

Salze - Name

Arten		Chloride	N
sind Salze der	Chlorwasserstoffsäure	Salp	
Formel der Säure	Formel der Säure		
die Säure dissoziiert in		H+ ; Cl	H ⁺
Aufstellen der Verhältnisformel für ein Salz 1. Wertigkeit des Metallions feststellen (PSE)	Na ⁺	$\begin{array}{ccc} Na^+ & Cl^- \\ 1 & : & 1 \\ \\ \rightarrow & NaCl \end{array}$	
2. Wertigkeit des Säurerests überprüfen 3. Verhältnis von positiven und negativen Ladungen so bilden, dass die Summe der Ladungen Null ergibt	Ca ²⁺	$\begin{array}{ccc} Ca^{2+} & Cl^{-} \\ 1 & : & 2 \\ \\ \rightarrow & CaCl_{2} \end{array}$	
oder 1. Ermitteln der Symbole der Elemente, aus denen die Verbindung besteht 2. Feststellen der Wertigkeit der Elemente	Fe ³⁺	Fe ³⁺ Cl 1 : 3 → FeCl ₃	
 Berechnen des k.g.V. Feststellen, wie oft die Wertigkeit im k.g.V. enthalten ist →Angeben des Zahlenverhältnisses der Ionen Aufstellen der Formel 	Fe ²⁺	Fe ²⁺ Cl ¹ 1 : 2 → FeCl ₂	

Aufstellen der Verhältnisformel für ein Salz

- 1. Wertigkeit des Metallions feststellen (PSE)
- 2. Wertigkeit des Säurerests überprüfen
- 3. Verhältnis von positiven und negativen Ladungen so bilden, dass die Summe der Ladungen Null ergibt

oder

- 1. Ermitteln der Symbole der Elemente, aus denen die Verbindung besteht
- 2. Feststellen der Wertigkeit der Elemente
- 3. Berechnen des k.g.V.
- 4. Feststellen, wie oft die Wertigkeit im k.g.V. enthalten ist
 - →Angeben des Zahlenverhältnisses der Ionen
- 5. Aufstellen der Formel

Phosphate	
Phosphorsäure	

H₃PO₄

3 H+ : PO₄3-

| | <u>Salze - Namen und Formeln</u>

X Übung

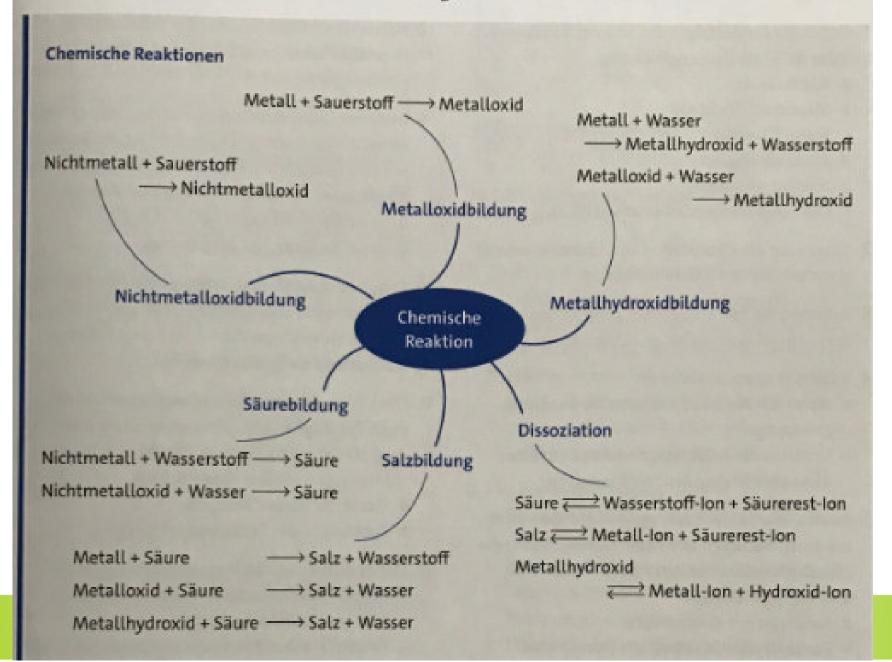
Arten		Chloride	Nitrate	Sulfate	Carbonate	Phosphate
sind Salze der		Chlorwasserstoffsäure	Salpetersäure	Schwefelsäure	Kohlensäure	Phosphorsäure
Formel der Säure		HC1	HNO ₃	H ₂ SO ₄	H ₂ CO ₃	H ₃ PO ₄
die Säure dissoziiert in		H+ ; Cl-	H ⁺ ; NO ₃ -	2 H ⁺ ; SO₄²⁻	2 H ⁺ ; CO₃²⁻	3 H ⁺ ; PO ₄ ³ -
Aufstellen der Verhältnisformel für ein Salz 1. Wertigkeit des Metallions feststellen (PSE)	Na ⁺	Na ⁺ Cl· 1 : 1 → NaCl	1:1 Na No,	2:7 Na ₂ 504	2:1 Na2C03	3:1 Naz PO4
 Wertigkeit des Säurerests überprüfen Verhältnis von positiven und negativen Ladungen so bilden, dass die Summe der Ladungen <u>Null</u> ergibt 	Ca ²⁺	$\begin{array}{ccc} Ca^{2+} & Cl^{-} \\ 1 & : & 2 \\ \\ \rightarrow & CaCl_{2} \end{array}$	1:1 (a(No3)2	1:1 Ca504	1:1 Ca CO3	3:2 (a3(P04)2
oder 1. Ermitteln der Symbole der Elemente, aus denen die Verbindung besteht 2. Feststellen der Wertigkeit der Elemente	Fe ³⁺	$Fe^{3+} Cl$ $1 : 3$ $\rightarrow FeCl_3$	1:3 Fe(NO ₃) ₃	2:3 Fe ₂ (50 ₄) ₃	7:3 Fe ₂ (CO ₃) ₃	1:1 Fe PO ₄
 Berechnen des k.g.V. Feststellen, wie oft die Wertigkeit im k.g.V. enthalten ist →Angeben des Zahlenverhältnisses der Ionen Aufstellen der Formel 	Fe ²⁺	$Fe^{2+} Cl$ $1 : 2$ $\rightarrow FeCl_2$	1:2 Fc (NO ₃) ₂	7:1 Fe 50 ₄	1:1 Fe CO ₃	3: Z Fe ₃ (PO ₄) ₂

	Natrium Na ⁺	Magnesium Mg ²⁺	Aluminium Al ³⁺	Blei Pb ⁴⁺
Cl ⁻	NaCl			
Chlorid	Natriumchlorid			
NO ₃				
SO ₄ ²⁻				
SO ₃ ²⁻				
CO ₃ ²⁻				
PO ₄ ³⁻				

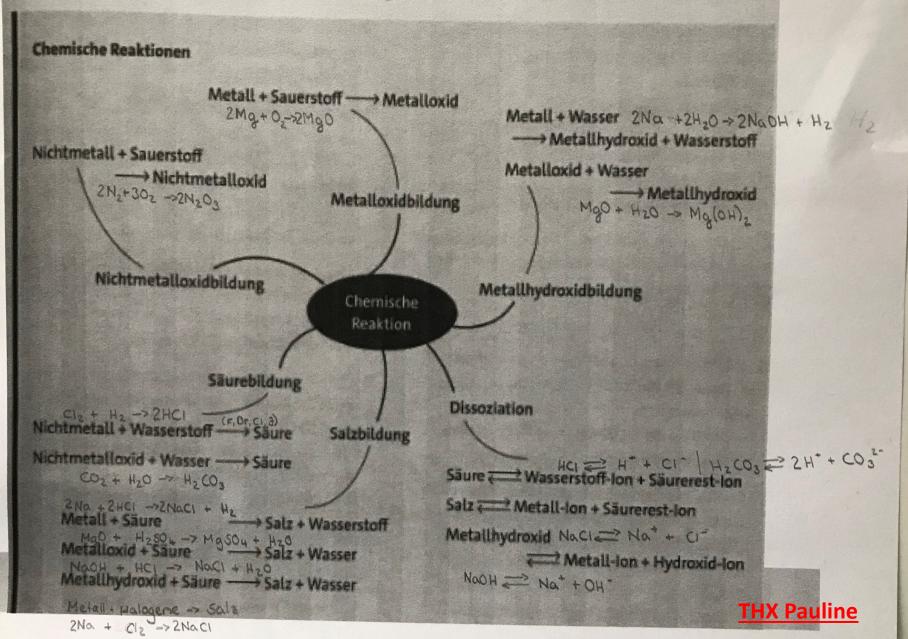
	Natrium	Magnesium	Aluminium	Blei
	Na ⁺	Mg^{2+}	Al ³⁺	Pb ⁴⁺
C1 ⁻	NaCl	MgCl ₂	AlCl ₃	PbCl ₄
Chlorid	NatriumChlorid	MagnesiumChlorid	AluminiumChlorid	Blei(IV)Chlorid
NO_3^-	NaNO ₃	$Mg(NO_3)_2$	$Al(NO_3)_3$	$Pb(NO_3)_4$
Nitrat	NatriumNitrat	MagnesiumNitrat	AluminiumNitrat	Blei(IV)Nitrat
SO_4^{2-}	Na_2SO_4	$MgSO_4$	$Al_2(SO_4)_3$	Pb(SO ₄) ₂
Sulfat	NatriumSulfat	MagnesiumSulfat	Aluminium Sulfat	Blei(IV)Sulfat
SO ₃ ²⁻	Na_2SO_3	$MgSO_3$	$Al_2(SO_3)_3$	$Pb(SO_3)_2$
Sulfit	NatriumSulfit	MagnesiumSulfit	AluminiumSulfit	Blei(IV)Sulfit
CO_3^{2-}	Na_2CO_3	MgCO ₃	$Al_2(CO_3)_3$	$Pb(CO_3)_2$
Carbonat	NatriumCarbonat	MagnesiumCarbonat	AluminiumCarbonat	Blei(IV)Carbonat
PO ₄ ³⁻	Na_3PO_4	$Mg_3(PO_4)_2$	AlPO ₄	$Pb_3(PO_4)_4$
Phosphat	NatriumPhosphat	MagnesiumPhosphat	AluminiumPhosphat	Blei(IV)Phosphat

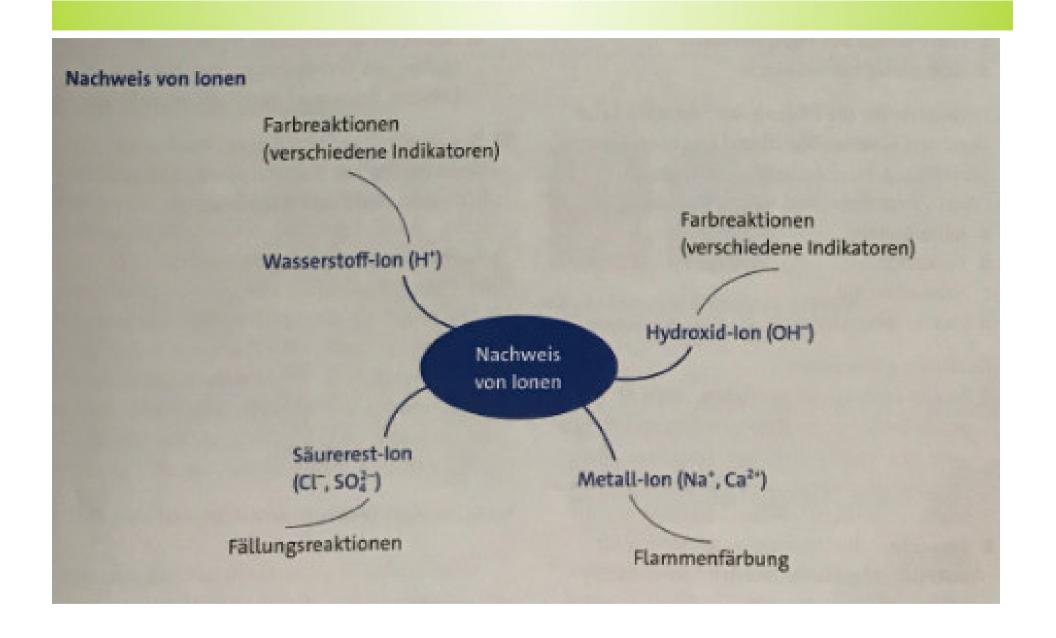
X M(M= Merksatz

DAS solltest Du KÖNNEN!! vergl, auch TW s. 144 Ionen


	1 10021021	!!! -> >>> 13 P =	luminium	Blei
	Na ⁺	\mathbf{Mg}^{2+}	Al ³⁺	Pb ⁴⁺
C1 ⁻	NaCl			PbCl ₄
Chlorid				Blei(IV)Chlorid
NO_3^-				
Nitrat				trat
SO_4^{2-}	Na_2SO_4		$Al_2(SO_4)_3$	$Pb(SO_4)_2$
Sulfat				
SO_3^{2-}			$Al_2(SO_3)_3$	$Pb(SO_3)_2$
Sulfit				
CO_3^{2-}				
Carbonat				<u>bona</u>
PO_4^{3-}	Na_3PO_4	N	AlPO ₄	$Pb_3(PO_4)_4$
Phosphat				

NUR FORMELN !!! →>>> 13 P = 1


S-B-S Zusammenfassung


191 ff bis 201 lesen & verstehen Fragen notieren Aufgaben lösen!!

Säuren, Basen und Salze systematisieren

Säuren, Basen und Salze systematisieren

